Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Clin Cancer Res ; 43(1): 88, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38515178

RESUMO

BACKGROUND: This study explores the repurposing of Auranofin (AF), an anti-rheumatic drug, for treating non-small cell lung cancer (NSCLC) adenocarcinoma and pancreatic ductal adenocarcinoma (PDAC). Drug repurposing in oncology offers a cost-effective and time-efficient approach to developing new cancer therapies. Our research focuses on evaluating AF's selective cytotoxicity against cancer cells, identifying RNAseq-based biomarkers to predict AF response, and finding the most effective co-therapeutic agents for combination with AF. METHODS: Our investigation employed a comprehensive drug screening of AF in combination with eleven anticancer agents in cancerous PDAC and NSCLC patient-derived organoids (n = 7), and non-cancerous pulmonary organoids (n = 2). Additionally, we conducted RNA sequencing to identify potential biomarkers for AF sensitivity and experimented with various drug combinations to optimize AF's therapeutic efficacy. RESULTS: The results revealed that AF demonstrates a preferential cytotoxic effect on NSCLC and PDAC cancer cells at clinically relevant concentrations below 1 µM, sparing normal epithelial cells. We identified Carbonic Anhydrase 12 (CA12) as a significant RNAseq-based biomarker, closely associated with the NF-κB survival signaling pathway, which is crucial in cancer cell response to oxidative stress. Our findings suggest that cancer cells with low CA12 expression are more susceptible to AF treatment. Furthermore, the combination of AF with the AKT inhibitor MK2206 was found to be particularly effective, exhibiting potent and selective cytotoxic synergy, especially in tumor organoid models classified as intermediate responders to AF, without adverse effects on healthy organoids. CONCLUSION: Our research offers valuable insights into the use of AF for treating NSCLC and PDAC. It highlights AF's cancer cell selectivity, establishes CA12 as a predictive biomarker for AF sensitivity, and underscores the enhanced efficacy of AF when combined with MK2206 and other therapeutics. These findings pave the way for further exploration of AF in cancer treatment, particularly in identifying patient populations most likely to benefit from its use and in optimizing combination therapies for improved patient outcomes.


Assuntos
Adenocarcinoma , Antineoplásicos , Anidrases Carbônicas , Carcinoma Pulmonar de Células não Pequenas , Carcinoma Ductal Pancreático , Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Auranofina/farmacologia , Auranofina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias Pulmonares/genética , Reposicionamento de Medicamentos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pulmão/patologia , Biomarcadores , Organoides/metabolismo
2.
NPJ Precis Oncol ; 7(1): 128, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066116

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, characterized by a treatment-resistant and invasive nature. In line with these inherent aggressive characteristics, only a subset of patients shows a clinical response to the standard of care therapies, thereby highlighting the need for a more personalized treatment approach. In this study, we comprehensively unraveled the intra-patient response heterogeneity and intrinsic aggressive nature of PDAC on bulk and single-organoid resolution. We leveraged a fully characterized PDAC organoid panel (N = 8) and matched our artificial intelligence-driven, live-cell organoid image analysis with retrospective clinical patient response. In line with the clinical outcomes, we identified patient-specific sensitivities to the standard of care therapies (gemcitabine-paclitaxel and FOLFIRINOX) using a growth rate-based and normalized drug response metric. Moreover, the single-organoid analysis was able to detect resistant as well as invasive PDAC organoid clones, which was orchestrates on a patient, therapy, drug, concentration and time-specific level. Furthermore, our in vitro organoid analysis indicated a correlation with the matched patient progression-free survival (PFS) compared to the current, conventional drug response readouts. This work not only provides valuable insights on the response complexity in PDAC, but it also highlights the potential applications (extendable to other tumor types) and clinical translatability of our approach in drug discovery and the emerging era of personalized medicine.

3.
Sensors (Basel) ; 23(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38005584

RESUMO

In this paper, we introduce a method for automated seaweed growth monitoring by combining a low-cost RGB and stereo vision camera. While current vision-based seaweed growth monitoring techniques focus on laboratory measurements or above-ground seaweed, we investigate the feasibility of the underwater imaging of a vertical seaweed farm. We use deep learning-based image segmentation (DeeplabV3+) to determine the size of the seaweed in pixels from recorded RGB images. We convert this pixel size to meters squared by using the distance information from the stereo camera. We demonstrate the performance of our monitoring system using measurements in a seaweed farm in the River Scheldt estuary (in The Netherlands). Notwithstanding the poor visibility of the seaweed in the images, we are able to segment the seaweed with an intersection of the union (IoU) of 0.9, and we reach a repeatability of 6% and a precision of the seaweed size of 18%.


Assuntos
Aquicultura , Alga Marinha , Países Baixos , Alga Marinha/crescimento & desenvolvimento , Aquicultura/instrumentação , Aquicultura/métodos
4.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447975

RESUMO

We propose a new paradigm for modelling and calibrating laser scanners with rotation symmetry, as is the case for lidars or for galvanometric laser systems with one or two rotating mirrors. Instead of bothering about the intrinsic parameters of a physical model, we use the geometric properties of the device to model it as a specific configuration of lines, which can be recovered by a line-data-driven procedure. Compared to universal data-driven methods that train general line models, our algebraic-geometric approach only requires a few measurements. We elaborate the case of a galvanometric laser scanner with two mirrors, that we model as a grid of hyperboloids represented by a grid of 3×3 lines. This provides a new type of look-up table, containing not more than nine elements, lines rather than points, where we replace the approximating interpolation with exact affine combinations of lines. The proposed method is validated in a realistic virtual setting. As a collateral contribution, we present a robust algorithm for fitting ruled surfaces of revolution on noisy line measurements.


Assuntos
Algoritmos , Lasers , Matemática , Rotação
5.
Sensors (Basel) ; 23(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36772626

RESUMO

The focus of this study is to design a backlit vision instrument capable of measuring surface roughness and to discuss its metrological performance compared to traditional measurement instruments. The instrument is a non-contact high-magnification imaging system characterized by short inspection time which opens the perspective of in-line implementation. We combined the use of the modulation transfer function to evaluate the imaging conditions of an electrically tunable lens to obtain an optimally focused image. We prepared a set of turned steel samples with different roughness in the range Ra 2.4 µm to 15.1 µm. The layout of the instrument is presented, including a discussion on how optimal imaging conditions were obtained. The paper describes the comparison performed on measurements collected with the vision system designed in this work and state-of-the-art instruments. A comparison of the results of the backlit system depends on the values of surface roughness considered; while at larger values of roughness the offset increases, the results are compatible with the ones of the stylus at lower values of roughness. In fact, the error bands are superimposed by at least 58% based on the cases analyzed.

6.
Cell Oncol (Dordr) ; 46(2): 299-314, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36508089

RESUMO

BACKGROUND: Patient-derived organoids are invaluable for fundamental and translational cancer research and holds great promise for personalized medicine. However, the shortage of available analysis methods, which are often single-time point, severely impede the potential and routine use of organoids for basic research, clinical practise, and pharmaceutical and industrial applications. METHODS: Here, we developed a high-throughput compatible and automated live-cell image analysis software that allows for kinetic monitoring of organoids, named Organoid Brightfield Identification-based Therapy Screening (OrBITS), by combining computer vision with a convolutional network machine learning approach. The OrBITS deep learning analysis approach was validated against current standard assays for kinetic imaging and automated analysis of organoids. A drug screen of standard-of-care lung and pancreatic cancer treatments was also performed with the OrBITS platform and compared to the gold standard, CellTiter-Glo 3D assay. Finally, the optimal parameters and drug response metrics were identified to improve patient stratification. RESULTS: OrBITS allowed for the detection and tracking of organoids in routine extracellular matrix domes, advanced Gri3D®-96 well plates, and high-throughput 384-well microplates, solely based on brightfield imaging. The obtained organoid Count, Mean Area, and Total Area had a strong correlation with the nuclear staining, Hoechst, following pairwise comparison over a broad range of sizes. By incorporating a fluorescent cell death marker, intra-well normalization for organoid death could be achieved, which was tested with a 10-point titration of cisplatin and validated against the current gold standard ATP-assay, CellTiter-Glo 3D. Using this approach with OrBITS, screening of chemotherapeutics and targeted therapies revealed further insight into the mechanistic action of the drugs, a feature not achievable with the CellTiter-Glo 3D assay. Finally, we advise the use of the growth rate-based normalised drug response metric to improve accuracy and consistency of organoid drug response quantification. CONCLUSION: Our findings validate that OrBITS, as a scalable, automated live-cell image analysis software, would facilitate the use of patient-derived organoids for drug development and therapy screening. The developed wet-lab workflow and software also has broad application potential, from providing a launching point for further brightfield-based assay development to be used for fundamental research, to guiding clinical decisions for personalized medicine.


Assuntos
Neoplasias Pancreáticas , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Imagem com Lapso de Tempo , Neoplasias Pancreáticas/tratamento farmacológico , Medicina de Precisão , Organoides
7.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560178

RESUMO

In 3D printing, as in other manufacturing processes, there is a push for zero-defect manufacturing, mainly to avoid waste. To evaluate the quality of the printed parts during the printing process, an accurate 3D measurement method is required. By scanning the part during the buildup, potential nonconformities to tolerances can be detected early on and the printing process could be adjusted to avoid scrapping the part. Out of many, shape-from-focus, is an accurate method for recovering 3D shapes from objects. However, the state-of-the-art implementation of the method requires the object to be stationary during a measurement. This does not reconcile with the nature of 3D printing, where continuous motion is required for the manufacturing process. This research presents a novel methodology that allows shape-from-focus to be used in a continuous scanning motion, thus making it possible to apply it to the 3D manufacturing process. By controlling the camera trigger and a tunable lens with synchronous signals, a stack of images can be created while the camera or the object is in motion. These images can be re-aligned and then used to create a 3D depth image. The impact on the quality of the 3D measurement was tested by analytically comparing the quality of a scan using the traditional stationary method and of the proposed method to a known reference. The results demonstrate a 1.22% degradation in the measurement error.

8.
RSC Adv ; 12(50): 32775-32783, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36425693

RESUMO

This study presents a novel method for the detection and quantification of atmospheric corrosion products on carbon steel. Using hyperspectral imaging (HSI) in the short-wave infrared range (SWIR) (900-1700 nm), we are able to identify the most common corrosion minerals such as: α-FeO(OH) (goethite), γ-FeO(OH) (lepidocrocite), and γ-Fe2O3 (maghemite). Six carbon steel samples were artificially corroded in a salt spray chamber, each sample with a different duration (between 1 h and 120 hours). These samples were analysed by scanning X-ray diffraction (XRD) and also using a SWIR HSI system. The XRD data is used as baseline data. A random forest regression algorithm is used for training on the combined XRD and HSI data set. Using the trained model, we can predict the abundance map based on the HSI images alone. Several image correlation metrics are used to assess the similarity between the original XRD images and the HSI images. The overall abundance is also calculated and compared for XRD and HSI images. The analysis results show that we are able to obtain visually similar images, with error rates ranging from 3.27 to 13.37%. This suggests that hyperspectral imaging could be a viable tool for the study of corrosion minerals.

9.
Bioeng Transl Med ; 7(3): e10314, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36176603

RESUMO

Melanoma remains a deadly cancer despite significant advances in immune checkpoint blockade and targeted therapies. The incidence of melanoma is also growing worldwide, which highlights the need for novel treatment options and strategic combination of therapies. Here, we investigate non-thermal plasma (NTP), an ionized gas, as a promising, therapeutic option. In a melanoma mouse model, direct treatment of tumors with NTP results in reduced tumor burden and prolonged survival. Physical characterization of NTP treatment in situ reveals the deposited NTP energy and temperature associated with therapy response, and whole transcriptome analysis of the tumor identified several modulated pathways. NTP treatment also enhances the cancer-immunity cycle, as immune cells in both the tumor and tumor-draining lymph nodes appear more stimulated to perform their anti-cancer functions. Thus, our data suggest that local NTP therapy stimulates systemic, anti-cancer immunity. We discuss, in detail, how these fundamental insights will help direct the translation of NTP technology into the clinic and inform rational combination strategies to address the challenges in melanoma therapy.

10.
Sensors (Basel) ; 22(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35270875

RESUMO

To automatically evaluate the ergonomics of workers, 3D skeletons are needed. Most ergonomic assessment methods, like REBA, are based on the different 3D joint angles. Thanks to the huge amount of training data, 2D skeleton detectors have become very accurate. In this work, we test three methods to calculate 3D skeletons from 2D detections: using the depth from a single RealSense range camera, triangulating the joints using multiple cameras, and combining the triangulation of multiple camera pairs. We tested the methods using recordings of a person doing different assembly tasks. We compared the resulting joint angles to the ground truth of a VICON marker-based tracking system. The resulting RMS angle error for the triangulation methods is between 12° and 16°, showing that they are accurate enough to calculate a useful ergonomic score from.


Assuntos
Ergonomia , Humanos
11.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35216069

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a challenging neoplastic disease, mainly due to the development of resistance to radio- and chemotherapy. Cold atmospheric plasma (CAP) is an alternative technology that can eliminate cancer cells through oxidative damage, as shown in vitro, in ovo, and in vivo. However, how CAP affects the pancreatic stellate cells (PSCs), key players in the invasion and metastasis of PDAC, is poorly understood. This study aims to determine the effect of an anti-PDAC CAP treatment on PSCs tissue developed in ovo using mono- and co-cultures of RLT-PSC (PSCs) and Mia PaCa-2 cells (PDAC). We measured tissue reduction upon CAP treatment and mRNA expression of PSC activation markers and extracellular matrix (ECM) remodelling factors via qRT-PCR. Protein expression of selected markers was confirmed via immunohistochemistry. CAP inhibited growth in Mia PaCa-2 and co-cultured tissue, but its effectiveness was reduced in the latter, which correlates with reduced ki67 levels. CAP did not alter the mRNA expression of PSC activation and ECM remodelling markers. No changes in MMP2 and MMP9 expression were observed in RLT-PSCs, but small changes were observed in Mia PaCa-2 cells. Our findings support the ability of CAP to eliminate PDAC cells, without altering the PSCs.


Assuntos
Neoplasias Pancreáticas/terapia , Células Estreladas do Pâncreas/efeitos dos fármacos , Gases em Plasma/farmacologia , Adenocarcinoma/metabolismo , Adenocarcinoma/terapia , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Galinhas , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Estreladas do Pâncreas/metabolismo , Fenótipo , Microambiente Tumoral/efeitos dos fármacos
12.
Sensors (Basel) ; 22(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35009949

RESUMO

In this study, we propose a new method to identify corrosion minerals in carbon steel using hyperspectral imaging (HSI) in the shortwave infrared range (900-1700 nm). Seven samples were artificially corroded using a neutral salt spray test and examined using a hyperspectral camera. A normalized cross-correlation algorithm is used to identify four different corrosion minerals (goethite, magnetite, lepidocrocite and hematite), using reference spectra. A Fourier Transform Infrared spectrometer (FTIR) analysis of the scraped corrosion powders was used as a ground truth to validate the results obtained by the hyperspectral camera. This comparison shows that the HSI technique effectively detects the dominant mineral present in the samples. In addition, HSI can also accurately predict the changes in mineral composition that occur over time.

13.
J Vis Exp ; (190)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36622028

RESUMO

Patient-derived tumor organoids (PDTOs) hold great promise for preclinical and translational research and predicting the patient therapy response from ex vivo drug screenings. However, current adenosine triphosphate (ATP)-based drug screening assays do not capture the complexity of a drug response (cytostatic or cytotoxic) and intratumor heterogeneity that has been shown to be retained in PDTOs due to a bulk readout. Live-cell imaging is a powerful tool to overcome this issue and visualize drug responses more in-depth. However, image analysis software is often not adapted to the three-dimensionality of PDTOs, requires fluorescent viability dyes, or is not compatible with a 384-well microplate format. This paper describes a semi-automated methodology to seed, treat, and image PDTOs in a high-throughput, 384-well format using conventional, widefield, live-cell imaging systems. In addition, we developed viability marker-free image analysis software to quantify growth rate-based drug response metrics that improve reproducibility and correct growth rate variations between different PDTO lines. Using the normalized drug response metric, which scores drug response based on the growth rate normalized to a positive and negative control condition, and a fluorescent cell death dye, cytotoxic and cytostatic drug responses can be easily distinguished, profoundly improving the classification of responders and non-responders. In addition, drug-response heterogeneity can by quantified from single-organoid drug response analysis to identify potential, resistant clones. Ultimately, this method aims to improve the prediction of clinical therapy response by capturing a multiparametric drug response signature, which includes kinetic growth arrest and cell death quantification.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Avaliação Pré-Clínica de Medicamentos , Reprodutibilidade dos Testes , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Organoides/patologia
14.
Front Robot AI ; 8: 709952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422914

RESUMO

Gaze gestures are extensively used in the interactions with agents/computers/robots. Either remote eye tracking devices or head-mounted devices (HMDs) have the advantage of hands-free during the interaction. Previous studies have demonstrated the success of applying machine learning techniques for gaze gesture recognition. More recently, graph neural networks (GNNs) have shown great potential applications in several research areas such as image classification, action recognition, and text classification. However, GNNs are less applied in eye tracking researches. In this work, we propose a graph convolutional network (GCN)-based model for gaze gesture recognition. We train and evaluate the GCN model on the HideMyGaze! dataset. The results show that the accuracy, precision, and recall of the GCN model are 97.62%, 97.18%, and 98.46%, respectively, which are higher than the other compared conventional machine learning algorithms, the artificial neural network (ANN) and the convolutional neural network (CNN).

15.
Front Robot AI ; 8: 687031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34222355

RESUMO

Safety is an important issue in human-robot interaction (HRI) applications. Various research works have focused on different levels of safety in HRI. If a human/obstacle is detected, a repulsive action can be taken to avoid the collision. Common repulsive actions include distance methods, potential field methods, and safety field methods. Approaches based on machine learning are less explored regarding the selection of the repulsive action. Few research works focus on the uncertainty of the data-based approaches and consider the efficiency of the executing task during collision avoidance. In this study, we describe a system that can avoid collision with human hands while the robot is executing an image-based visual servoing (IBVS) task. We use Monte Carlo dropout (MC dropout) to transform a deep neural network (DNN) to a Bayesian DNN, and learn the repulsive position for hand avoidance. The Bayesian DNN allows IBVS to converge faster than the opposite repulsive pose. Furthermore, it allows the robot to avoid undesired poses that the DNN cannot avoid. The experimental results show that Bayesian DNN has adequate accuracy and can generalize well on unseen data. The predictive interval coverage probability (PICP) of the predictions along x, y, and z directions are 0.84, 0.94, and 0.95, respectively. In the space which is unseen in the training data, the Bayesian DNN is also more robust than a DNN. We further implement the system on a UR10 robot, and test the robustness of the Bayesian DNN and the IBVS convergence speed. Results show that the Bayesian DNN can avoid the poses out of the reach range of the robot and it lets the IBVS task converge faster than the opposite repulsive pose.

16.
Materials (Basel) ; 14(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209551

RESUMO

In this article, we report the use of a Confocal Laser Scanning Microscope (CLSM) to apply a qualitative assessment of atmospheric corrosion on steel samples. From the CLSM, we obtain high-resolution images, together with a 3D heightmap. The performance of four different segmentation algorithms that use the high-resolution images as input is qualitatively assessed and discussed. A novel 3D segmentation algorithm based on the shape index is presented and compared to the 2D segmentation algorithms. From this analysis, we conclude that there is a significant difference in performance between the 2D segmentation algorithms and that the 3D method can be an added value to the detection of corrosion.

17.
Sensors (Basel) ; 21(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33916895

RESUMO

Shape from focus is an accurate, but relatively time-consuming, 3D profilometry technique (compared to e.g., laser triangulation or fringe projection). This is the case because a large amount of data that needs to be captured and processed to obtain 3D measurements. In this paper, we propose a two-step shape-from-focus measurement approach that can improve the speed with 40%. By using a faster profilometry technique to create a coarse measurement of an unknown target, this coarse measurement can be used to limit the data capture to only the required frames. This method can significantly improve the measurement and processing speed. The method was tested on a 40 mm by 40 mm custom target and resulted in an overall 46% reduction of measurement time. The accuracy of the proposed method was compared against the conventional shape from focus method by comparing both methods with a more accurate reference.

18.
Sensors (Basel) ; 21(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562538

RESUMO

Knowledge of precise camera poses is vital for multi-camera setups. Camera intrinsics can be obtained for each camera separately in lab conditions. For fixed multi-camera setups, the extrinsic calibration can only be done in situ. Usually, some markers are used, like checkerboards, requiring some level of overlap between cameras. In this work, we propose a method for cases with little or no overlap. Laser lines are projected on a plane (e.g., floor or wall) using a laser line projector. The pose of the plane and cameras is then optimized using bundle adjustment to match the lines seen by the cameras. To find the extrinsic calibration, only a partial overlap between the laser lines and the field of view of the cameras is needed. Real-world experiments were conducted both with and without overlapping fields of view, resulting in rotation errors below 0.5°. We show that the accuracy is comparable to other state-of-the-art methods while offering a more practical procedure. The method can also be used in large-scale applications and can be fully automated.

19.
Materials (Basel) ; 12(21)2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31671798

RESUMO

Asphalt mixtures are the most common types of pavement material used in the world. Characterizing the mechanical behavior of these complex materials is essential in durable, cost-effective, and sustainable pavement design. One of the important properties of asphalt mixtures is the complex modulus of elasticity. This parameter can be determined using different standardized methods, which are often expensive, complex to perform, and sensitive to the experimental setup. Therefore, recently, there has been considerable interest in developing new, easier, and more comprehensive techniques to investigate the mechanical properties of asphalt. The main objective of this research is to develop an alternative method based on an optical measurement technique (laser Doppler vibrometry). To do this, a frequency domain system identification technique based on analytical formulas (Timoshenko's beam theory) is used to determine the complex modulus of asphalt concrete at its natural frequencies and to form their master curve. The master curve plotted by this method is compared with the master curve obtained from the standard four-point bending test, and it is concluded that the proposed method is able to produce a master curve similar to the master curve of the standard method. Therefore, the proposed method has the potential to replace the standard stiffness tests. Furthermore, the standard stiffness methods usually conduct experiments up to the maximum frequency of 30 Hz. However, the proposed method can provide accurate complex modulus at high frequencies. This makes an accurate comparison between the properties of the asphalt mixtures in high frequencies and the development of more accurate theoretical models for simulation of specimens possible.

20.
Sensors (Basel) ; 19(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818759

RESUMO

The traditional literature on camera network design focuses on constructing automated algorithms. These require problem-specific input from experts in order to produce their output. The nature of the required input is highly unintuitive, leading to an impractical workflow for human operators. In this work we focus on developing a virtual reality user interface allowing human operators to manually design camera networks in an intuitive manner. From real world practical examples we conclude that the camera networks designed using this interface are highly competitive with, or sometimes even superior to, those generated by automated algorithms, but the associated workflow is more intuitive and simple. The competitiveness of the human-generated camera networks is remarkable because the structure of the optimization problem is a well known combinatorial NP-hard problem. These results indicate that human operators can be used in challenging geometrical combinatorial optimization problems, given an intuitive visualization of the problem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...